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0. Introduction

A point process in the plane is a random distribution of points

in a subspace of the plane, generally the positive quadrant IR 
2

'Whereas the point processes on the real line have particular proper-

ties derived from the natural linear order of the real numbers, the

case of plane or generally IRn point processes seems more difficult

due to the lack of total order between the jump points of the process.

Our main interest here is to study the properties of the point pro-

cesses derived by the partial-order structure in the plane. Here we

treat only the two-parameter case (the plane), but almost every re-

sult can be simply extended to the n-parameter case, following the

nnatural partial-order in IR , and sometimes to lattices or general

directed sets as it was begun by Mazziotto and Merzbach in [19].

The general case in which the parameter set is a a-algebra of

subsets of some space was first studied extensively by J.F.C. Kingman

[15] and by J. Mecke. Some developments are due to Y.K. Belyayev,

M.R. Leadbetter [16], R.K. Milne [301, P. Jagers [12], 0. Kallenberg

[14], and J. Neveu [31].

This paper is essentially a survey paper, especially on the

author's ?apers on the subject. But clearly, several interesting

directions are not treated at all here, for example the Poisson cal-

culus (see Mazziotto-Szpirglas [211) and Markov properties which

are understudied up to today (see [19]).

We hope that the techniques developed here could be applied to

control theory, multi-armed bandit problems, random geometry (eco-

logy, astronomy), multi-components machine problems and queueing

theory. For example a two-server queueing process Qz can be well

V
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2

described by Qz =Q 0 +Az -Dz where Q0 is the initial state and Az and
D are point processes. For each z = (s,t), the random variable Q

z

can be interpreted as the number of customers waiting in the first

line at time s and waiting in the second line at time t. This kind

of problem occurs where the two lines (or servers) are not in proxi-

mity one to the other, and we don't obtain information from the lines

/> at the same time. The process A (D,) is the number of arrivals (de-
~z
partures) in the rectangle R , and is called the arrival (departure)

process.

The paper is divided as follows. In the first section we develop

the basic tools for the dynamical study of two-parameter processes

such as the notions of predictability, stopping lines and optional

* increasing paths. Point processes are defined in the second section.

We study simple and strictly simple point processes, compensation

(dual predictable projection) and characterizations of the jump lines

associated with a point process. We present also conditions in order

to obtain strong martingales, and, as example, the one-jump process.

The third section is devoted to the concepts of measures, stationarity

and orderliness with its ramifications, extending some works of

Daley [7]. We treat general results such as Korolyuk's theorem and

Dobrushin's lemma following the approach of M.R. Leadbetter [161.

The notion of stationarity is introduced. Section four is entirely

devoted to the (doubly stochastic) Poisson process. We put here

several characterizations and this Process is a good illustration of

the previous sections.

In the last section, we define and study the Palm measure (see

[24]). For one-parameter simple ooint processes, it was introduced

...............................................m
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for the first time by Palm (in 1943) and studied by A.Y. Khinchin.

In the sixties and seventies the Palm measure was considerably ex-

tended by Ryll-Nardzewski, K. Matthes, J. Mecke [23], P. Jagers (see

[121), and others, in particular for point processes on a locally

compact space with a countable basis. A good account of today's

theory is given by J. Neveu [31]. Here we will present a new defini-

A tion for the two-oarameter case, which extends the classical defini-

tion on the line which obtains the Palm measure by the translation

of the probability of the greatest jump point which is smaller than

the origin. For this purpose, the main idea is to look at the jump

lines, instead of the jump points, associated with a point process,

in order to obtain a well-ordered increasing sequence of jumps. This

new and fruitful technique was already used by Mazziotto-Merzbach

[19] in other connections.

I wish to take the opportunity to thank the faculty members and

the staff of the Center for Stochastic Processes at Chapel Hill for

its warm hospitality, which permitted me to write this paper in a

quiet and mathematically encouraging atmosphere.

i.m

Oi
.1 .



4

1. Notation and general background

The usual notation and the main tools are introduced as fol-
2

lows: The processes are indexed by points of TR+ in which the

V" partial order induced by the Cartesian coordinates is defined:

let z =(s,t) and z' =(s' ,t'), then z z' if s<-s' and t t', and

z <z' if s <s' and t <t'. We denote z A Z' if s < s' and t - t'. A

Probability space (2,F,IP) is given equipped with an increasing

right-continuous filtration {F ,z }IR+2 of sub-a-algebras of F.

For z =(s,t), denote F1 =F _) and F 2 F and F* = F1 vF 2
z (s, z ,t) z z z

1 2The conditional independence property, for every z, F and F are
Z Z

conditionally independent given Fz, will not be assumed throughout.

Denote by S the set of all the decreasing lines, i.e. L E S if

and only if

(i) For all z,z' E L' either z AZ' or z' AZ.

2
(ii) For all z E T+ and z /L, a z' E L : z < z' or z' < z.

For each z = (s,t), denote z ={(s,t') :t -t'} u {(s',t) : s <-s'},

z=f(s,t')}:t' -t} u {s',t) :s' -<s} and z =z Uz. Clearly z,z E S

(but not z). If LL' cS, we denote L -L' if for all z EL, Zz' EL'

such that z -z'. This relation defines a partial order in S. L <L'

will ,.ean L <-L' and L n L' = . Also z <-L will mean z -L.

L A L' = sup{L" :L" 5L and L" -L'}

L vL' = inf{L" : L 'L" and L' <L"1.

2Let A be a subset of IR 2  the Debut of A, denoted D will be the+' A

areatest element of S such that z <D A*z /A. (For examole, D -z.)DA " -z }=

A random decreasing line L : C -S is called a stooping line if

for every z IR2 {w :z -L(w)} F . A stopping point Z is a random
+'

..- "",
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ooint such that Z is a stopping line. L is called a stepned stoo-

ping line if for every w EQ, the set of the minimal points of L(,)

is denumerable and is finite in every bounded domain. A random in-

. creasing path 7 is called an optional increasing path if for every

stopping line L, DLn F is a stoppi .g point.

2In the product space Q x IR2, the predictable (resp. 1-predict-

able, 2-predictable, *-predictable) a-algebra is defined to be the

i-algebra generated by the sets F x (z,z'], where F F (resp. F F 1

z zF2 *)
F.-F 2 FE F and (z,z'] is the rectangle { :z < <z'}; it is de-

z z 1" 2l 2 2
noted P (resp. I R In + x IR + , another predictable a-

+ +

algebra is needed: P is defined to be the a-algebra generated by

the sets F (zl1z 1] x (z 2 ,z ] where F E Fsup(z z) and every couple

taken from (zl, 1  × (z2 ,z] satisfies the relation A. A stopping

line L is called predictable or announcable if its graph -L--=

( (w,z) :z -L(i) } is a oredictable set.

A process A= {A ,z R is called increasing if its increment

on every rectangle (z,z'] is nonnegative:

A(z,z'] =A , - (tI-) A (5 ~t) +A -!0. The difference of two in-

creasing processes is called a process of bounded variation. Let us

introduce the different kinds of martingales used below. Let

M =fM ,z R 2 be an adapted and integrable process. M is a weakz +Z

martingale if E[M(z,z']/F I =0, M is an i-martingale if F is re-
z z

placed by F (i =1,2), M is a martingale if E[M /F ] =M (which isz z z z
equivalent to say, where the conditional independent property is

satisfied, that it is a 1-martingale and a 2-martingale and a one-

parameter martingale on the axes), and M is a strong martingale if it

0%

.-,
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2

is a martingale and E[M(z,z']/F* =0, for every z <z' in IR+ (see

[25]). To every increasing integrable and adapted process A, we can

associate its dual predictable (resp. i-predictable, i =1,2) pro-

jection denoted A7 ,resp. A i =1,2 ). It is characterized to

* be the unique predictable (resp. i-predictable, i =1,2) increasing
Tr (i)

process such that A -A (resp. A -A , i =1,2) is a weak martingale

(resp. i-martingale, i =1,2) [28]. Let X = {Xz

continuous process (lim X , =X z) possessing limits in the other
z<z'

-~ z '-~z

quadrants, and denote its jump at z = (s,t) by the following:
1 2

•.X =X -X -X +X A X =X -X and AX =X -X .e z z (s-,t) (s,t-) z' z z (s-,t) zz (s,t-)
Q= A x _ ix  = 2 _ 2 x

Therefore AXz  z (st-) X z (s-,t) Moreover, if X is

. increasing then the set of its discontinuous points is constituted

* by a countable number of semi-lines parallel to the axes and if X is

also adapted then this set is a countable union of stepped stopping

S!- lines [20].

--N* *..
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2. Point processesi IR2
Definition: A right-continuous process M = {M ,z T + is cdlled

a plane point process if

(i) M vanishes on the axes and takes its values in L{x},

(ii) M is increasing,

2
(iii) M is adapted (with respect to a given filtration J ,z R R').

In [27] we required also that for every z 2L]R + MzAM ,I2M Z 'Oi} Here,

a process satisfying this property will be called strictly simple, and if we re-

quire only IM {0,i}, the orocess will be called simple. It is clear
-,-I 2 1 M  2 M.'. that if for every z , 1 ,i M 60,i}, then M is strictly simple.that if+forer z z

- For all z, we have M = IM,,, therefore M can be characterized
* z z

as an adapted discrete measure which is a linear combination of

Dirac measures 7n DLC7 on the random jumo points {Z 1, e.g. the set
n- n . nn

of the (different) points such that AMZ  0.
nTo every point process M, we can associate another point process

>1* which is simple, defining it by 7 - Notice that M* is not
~n Znnecessarily strictly simple, but, as a consequence of the following

proposition, we can associate to M another point process M**, which

is strictly simple, by deleting for every n the jump point Z which

belongs to vertical or horizontal lines generated by Z ,m cn:.= m

Proposition 2.1: M is a strictly simple point process if and only if

1 ('I(L) = 0 or 1 for every segment L parallel to one of the axes' =1.

Proof: Suppose :i is strictly simple, and let L be a segment parallel

to say, the first axis and that M(L) >1. Then there are at least

two consecutive points z = (s,t) and z' = (s' ,t) on L which are jump

04
. - .

-o..

&t%
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,points M = M.' , =1. Since M is strictly simple, we obtain
z z

-'M =2 M =1 and therefore M =( 5  t =M . We canz (s',t)

suppose that s <s'. If M is constant on the interval [s,s'), then

there are no jump points in ((s,0),(s',O)). Thus M(s,,t)(s' 't) (s,t)
and M= which means that M1 =M This contradictsM s'1-(s,t-) z (s,t-)

2,
the fact that A Mz =1.

Conversely, suppose the condition of the proposition is verified

and suppose that there exists a point z such that IM > 1. Then, at

least one of the segments of z has a M-measure greater than 1, which

contradicts the qiven condition.

* Coming back to the jump points fZ } of the point process M, noten n
that they are not, in general, stopping points and therefore we can-

not expect to characterize M by its jump points. However, if M4 is
strictly simple, the jump points Z n are characterized by the fol-

lowing properties:

(i) Z0 =(0,O) and if Z =- then Z = for all m >n.
n m

(ii) For all n such that Z <- then Z /Z for all m >n.,: n m n

(iii) For all n >1, 24z =1 a.s. and z = z "
Zz n iZ z}n n

(iv) For every random point Z such that IZZ~n( (nZn) is evanescent,
n n

we have M2 =0 a.s., and if moreover 'ZZa( 1Z I)is evanescent,
1. .2 n n1 = MZ =0 a.s. (This condition means that if A Mz =1 then there

.'-'.- exists an integer n such that Z , Z and if moreover 1. = , then.3-i

there exist integers m and n such that Z =Z nZ .)n m

...Conversely, let Zn be a sequence of stopping points satisfying

(i) and (ii). Then the process M defined by MI =k-1 where k is the

number of sets [Z ,o) which contain the point z, is the strictly sim-

ple point process !Z
...n n

::Z:
- '* ~ ~~.. . . . . . .. ..' "J,



9'

In the same spirit, we can define the concept of multivariate

plane point process using the notion of discrete measure, since the

couples of random variables (Zn X n) n-i cannot characterize a multi-

A, variate point process. We consider a Lusin space E and an extra

point A. A multivariate point process is the following discrete
random measure on IR+ E:

( ;dzdx) = () < . (Zn() X n(-j) (dzdx),
nl n nX

- where Z denotes the Dirac measure located at point a,
a

• the random points 1Z } satisfy properties (i) and (ii) from above,
n n

*• X i are random variables in E< ,
n n

X ( =A if and only if Zn ( ) = ,n n
For each Borel subset C of E, the process

M (C) =M(IR <C) = I 1I C(X n ) is adapted.
'-%n.- 1 n

Note that if E reduces to one point, then M (E) reduces to an

ordinary strictly simple point process.

As in the one-parameter case, we can prove and characterize the

existence of the dual predictable projection of a multivariate

point process [27].

Let us now introduce the following sequences of random lines

associated with a given point process M. Define

L1 =L i =D{M Z n' and for n >1, define L =D{z:A.4 =1L
z n-i

(which is equal to A kZk for all the integers k such that

Ln_ <Z and Ln = D {M n
z

S%.04 %

'Sz " .. *
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Proposition 2.2: Any of the sequences {L I or {L'}' which
n n=1 nl w

satisfy the respective following properties characterize the strict-

ly simple point process M.

(i) For all n, L and L' are stepped stopping lines,
n n

(ii) The sequences {L } and (L' are increasing,n n n n

(iii) {L is disjoint: ZL ZL = for m n,n' " n n m'

(iv) For all m #n, for all w E Q, the set ZL' (s)7KL' ( )is

countable. Moreover these lines satisfy

n n n -n n n

Proof: [271 Let the sequence {L'} satisfying (i), (ii), (iv) be
n n

given and construct the following bounded variation process:

S 0 if z <L'
B n if L' -z 1
z n n+1

- if for all n, L' <z.
~n

This process is adapted and can be decomposed by B =M -N where

M z'z IABz, z -z N ' zB 11 are adapted and increasing

processes. M is the process associated to the sequence {Ln n . The

same holds for the sequence {Ln In

Proposition 2.3: If M is a strictly simple point process such that

every random point Z satisfying AIM Z + 2M Z - A:, =2 is not a stopping

point. Then for any optional increasing path 7, the one-parameter
.J

), . point process along this path M' is also simple. Conversely, if

for any optional increasing path 7, the one-parameter process M is

a simple point process and suppose that M is increasing, then M is

a strictly simple point process.

-,~ %. A ~

";,4...,*
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The proof of this proposition is easy since the first point of

intersection between an optional increasing path and a stopping

line is a stopping point. This proposition shows that the strictly

simple property is very natural when we extend the simple property

fro the one-parameter case.

Turning now to the properties of predictability for a point pro-

cess M, let us call the dual predictable projection of M the compens-

ator of M, denoted M or the predictable measure associated with M,

and if this measure is absolutely continuous with respect to the

Lebesgue measure, denote the density by \ and call it the intensity~z

of the point process M. This process can be chosen to be predictable.

Notice that M -M (I ) -M (2) +M7 is a martingale of bounded variation.

We have to note here that it was proved in [19] that even in the

general case where the parameter set is a directed set, every point

process can be described as an integer measure on a well-ordered

set, and then the predictable projection and the dual predictable

projection of a point process can be constructed.

Theorem 2.4: Let M be a simple process whose compensator M is con-

tinuous and M -M is a strong martingale. Then M is strictly simple

and more generally, with probability one, any given optional increas-

ing path contains at most one jump point.

Proof: The main idea of the proof follows Ivanoff [101, except the

fact that M must not necessarily be deterministic. For K <- arbitrary,
"['['" _(n)} o [0K 2 , w ihm s ted to zr

define a rectangular grid Iof , which mesh tends to zero
i j

where n tends to infinity. Let r be an optional increasing path, A

the event that P contains more than one point, and Bn the event that
D n)

M(Di () 1 for some pair (i,j). Therefore"j

.4
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A H _ (Di~ 113 z  ) O

i,j (k, -Z) (i,j)

and

- ~~ (n(K) (n)(n
IP(A) < 7 - P >0 M(Dn -P {M(Di,() >Oi +P(Bn)

i,j CkZ)4ij)
(h, 0)3 (i, j)

Since M is simple, IP(B ) 0 as n -. Now, note that
n

t (n) -iF) > 0} EF*"M(Dn) >0} (kZ) for any pair (k,Z) -(ij), (kZ) # (i,j)

Thus for any E >0, if n is sufficiently large,
. (n) F (n) ()-'1)M( n

k, > 0 1M (Din 1) >0} <-E[M(Dkin) "M(D.n~C) >0]
- "' IMDM(Dr ~

I:. =E[M( FZ-) ,M4(D -)7) > ] -0 1

i}"'j
Finall%, for n sufficiently large, we obtain

(n)
_ (A _ /IP {M(D. .nf) >0} + IPB ),

i,j k,z

and therefore

I (A) = 0.

The following proposition was proved by Ivanoff [101.

Prooosition 2.5: Let M be a simple point process and suppose that

the conditional independence property is satisfied. Then M -M is

a strong martingale.

Let us mention also the following result due to Kallenberg [13],

despite the fact that it is a general result in which the partial

order does not intervene.

Proposition 2.6: Let M be a point process and Ac 8 be an algebra

containing some basis for IR+. Then the distribution of M* is unique-

ly determined by all IP {M(A) = 0} for bounded A A.

,A Z J.1 P
" 1 I

e% e,
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*' 2
Recall that for any non-negative process X = {X ,z .I+ }, the

predictable orojection of X is defined to be the unique predictable

process Y={Yzz EI 2 ' such that E[fXzdA = E[JY dA I for every in-
Z + Z zZ

% creasing and predictable process A = {A ,z m ; The following pro-

position was essentially proved in [27].

Proposition 2.7: Let M be a point process, Zn  its jump points

and L and L' its associated jump lines. Assume the followingn n

statements:

* (i) M is a predictable process,

(ii) The stopping lines {L } are predictable (announcable),

(iii) The stopping lines {L' }n are predictable (announcable),
nn

(iv) For all n, the predictable projection of the process
n

vanishes,

(v) M is a quasi-continuous to the left: for every predictable

stopping line L, finLdM =0.

(vi) For every predictable stepped stopping line L, fI-L dM =0,

(vii) The dual predictable projection M7 is a continuous process,

(viii) The predictable projection of the process I-n , vanishes.

Then (i)<=> (ii)<=> (iii) and (iv)-> (v) <> (vi)<--> (vii)- (viii).

Returning to the compensator M, it is the unique predictable in-

creasing process such that M-M is a weak martingale, and can be

calculated directly as follows.

Proposition 2.8: Let M be a simple point process. Then for every

2
z IR,- +

_4 -( n ) -( n )
M=lim din1( )! lim If(n) OJ

z .i i,n . 1i,nn-*oo n-c 1
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(nn)

wher fo(n)r},.D is a rectangle partition of the rectangle

[(0,0),z], d. is the first point of D.(n ) and it is assumed that
~th
the mesh size of the n partition tends to zero.

* Example: There are two kinds of diametrically opposite examples,

* the Poisson process that we shall study in detail later and the "one-

jump process" summed up here.

One-jump process: This kind of process was extensively studied by

A. Al-Hussaini and R. Elliott [1,2,3] and also by G. Mazziotto and

J. Szpirglas [221. Let Z = (S,T) be a stopping point and consider

the point process M =Iz . Denote by F the distribution function

of Z and by G its survivor function: G(z) =I{z <Z1. The predict-

able measure of M clearly depends on the chosen filtration. In the

minimal filtration such that Z is a stopping point (which does not

satisfy the conditional independence property, except in some de-

generate situations) , one obtains [221

z
(0z f I,{u<-S or v<-T}(dF(uv))/( F(u-,v-)).

z 0o 0)

In the product filtration (which satisfy the conditional independence

property if and only if S and T are independent), one obtains [2]:

ZAZ

R (dG ~)(G(~)
z^Z

z (0,0)

In both cases, M -M is a weak martingale. Moreover if F is continu-

ous, then M is continuous and 11 is quasi-continuous to the left.

We will finish this section with the representation theorem.

This theorem is valid only for strictly simple point processes since

the method of proving it is by considering the truncated point pro-

cess as a multivariate one-parameter point process, where the mark

is the value of the process at the second coordinate, and then to use

. . .
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the one-parameter multivariate point process representation theorem

due to Jacod [11]. This following representation theorem was proved

by Merzbach and Nualart in [271.
a

Theorem 2.9: Let M be a strictly simple point process satisfying

the following: M <- for every z IR2, a.s.; the filtration ?F is
z z

the natural filtration generated by M and verifies the conditional

independence property, M (l ) is continuous in the first coordinate,

and 1(2) is continuous in the second coordinate. Suppose that

N2,
N = Nz ,z ! is a martingale with respect to the filtration F

which is bounded in any rectangle R . Then, there exist two pro-

cesses Xz and Y(z,z') verifying the following properties:

(i) X is one-predictable and adapted, and Y(z,z') is P-measurable.
z

Also,
st
jd z M( 1  (dz) <

00

and
f[[ 'y , I (i) (2)

f m (, ) (dlr)M (d2 ') -
R R

z z

2
for all zz' : R.

(ii) For any z such that N <-, we havez

NZ =N + fX.(M ( I ) (d,) -M(d ))+ fY(r,r') (M( I ) (d:) M(d (M)) (M2 ) (d 7) -M(d l)z 0,0
Rz Rz z

Remarks:

(1) (2)
1. Using the continuity properties of the processes M and M

(on the first and second coordinates, respectively), it can be proved

V 

W
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that the processes Xz and Y(7,') appearing in the above representa-

tion are essentially unique. From this fact it follows that the re-

oresentation result holds for locally bounded martingales.

Actually, the boundedness property has only been used to assume

N has a right-continuous and left-limited version and also to check

the integrability conditions (i) and (ii).

2. Clearly, a symmetric version of the representation theorem could

also be stated. If we assume that M (1)=M (2 ) then both representa-

tions coincide and the process X is predictable.

.%%

*.q

' ..
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3. Measures, orderliness and stationarity

A useful tool for the study of point processes is the following

bimeasure (that is, a function of two variables such that it is a

measure in each variable when the second variable is fixed). Let M

be a ooint process and denote by \ (or simply by k when there is

no risk of confusion) the bimeasure on the product space

-~ 2." +, FoB) defined by

(F,B) = fM(B)dIP,
F

This bimeasure is sometimes called the Campbell measure or the

Doleans measure associated with the process M.

*g Note that generally a bimeasure cannot be extended to a measure

on the c-algebra generated by the product space (look, for example,

at the Brownian sheet or even at the Brownian motion in which there

is no extension). However, if M is a point process, since it is in-

creasing and non-negative, it is easy to see that \M can be extended
2

to a measure on the product space ( + I F).

We shall suppose from now on that \ is a Radon measure (that is

" finite on bounded sets, M has finite expectation or is integrable).

The measure ' (2,) is called the measure intensity (or sometimes

the principal measure) of the point process.

In the classical theory of point processes orderliness is loose-

ly speaking the property that points are distinct or that probabil-

istically they are not infinitesimally close. Various definitions

have been proposed and extensively studied by D.J. Daley [7] in the

real case. Notice that the word "orderliness" is used here because
-ps.

this condition implies that almost surely there exists an essentially

-04
*' -- .. V v4 . , W" - ,- -" ." " - * -" ," ." - " ", .. -. - -* -" - " "* -. " .•" -"", , , - ' "" " . . . ""' " , .
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unique ordering of the jump points of the process.

An interesting generalization of the strictly simple property

is the following:

Definition 1: A point process N is almost surely m-orderly if

iJIP(N (L) =0 or 1 for every m-null set L in IR+ 2 i

2where m is a measure, generally the Lebesgue measure in IR Note
+

that the Poisson process in the plane is almost surely m-orderly

(where m is the Lebesgue measure). Conversely, an almost surely m-

orderly process is strictly simple.

Other definitions are taken from Daley [7].

- Definition 2: A point process N is (uniformly) Khintchin order-

, ly if to each z c IR+ and c > 0 (to each c > 0), there exists

- (z,-) ( -(£)) such that

IPfN(D) >_2} <.-IP{N(D) ->i}

for D a rectangle such that z ED and m(D)<5,

(IP{N(D ) -2} <£'IP{N(D ) -11z z

for all rectangles D with first point z such that m(D ) <3.)z z

Definition 3: A point process N is ordinary if for every bounded

rectangle D,

inf7IPfN(D i) ?21 =0,

where the inf goes over all the finite partitions {Di} of D into

mutually disjoint subrectangles.

Definition 4: A point process N is (uniformly, m-) analytically
' 2

orderly if to each z IR+,

NJ
@I3..

. . . . . . . . ..." .. " .. ." . -"-" . .. ,-"-.. '.. .", - ," . ." -"-".,"-. " . ,. .,.. . .".. .""" Vt, ,,,""' ',r,,,A,
i . .. .., . . .- o """-" -. " -,,. " o"z . ,- ' -'.3

,-
-. 2... '" , ," . . .. " "". ,"% % '", "J ' ' '.,,.J . ".4 , ,"., ,," , ,' , "" .'," '" 

% '"
" " % 
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lim m(D) IP{N(D) 21 =0, where z ED
m (D) -0

(resp. -1
6..lim su 2M(Dz IP N (Dz  _21 =0,

m (Dz )- 0 z IR +to each L m-null set

tolim m(L)nIP{N(Ln  2} = 0

where {L 1n decreases to L).
n n=l

Proposition 3.1: Let N be an m-analytically orderly point process

2and let m be a Radon measure on IR+. Then N is almost surely m-

orderly. In particular if m is non-atomic then N is simple, and if

m is continuous with respect to Lebesgue measure then N is strictly

simple.

Proof: Let a compact set K in IR2 and c >0 be given. Since m is

Radon, then it is finite on compact sets and regular. Therefore to
each Borel m-null set L, there is an open neighborhood Lk of L such

that

IP (N(Lk) 2} < £m(Lk) -

A finite number of these neighborhoods, say n, cover K and each m-

null set belongs to a finite number of such neighborhoods. Now we

obtain in the usualy way a partitioning of K into disjoint Borel

'sets Al. ... A with

"-' IP N (Ai -2} <F-m(A i

% %

'-

V.5
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Therefore

IP~there exists a m-null set L such that N(L) U2}

n n
IP fN(A.) -2} < m (A = m(K).

".j=l 1i=l

Since this holds for any >0, then this probability vanishes and

we obtain the m-orderly property for sets in K and therefore in the

whole space by the a-compactness property.

Other results are close to those given by Daley.

Theorem 3.2: Let N be a (uniformly, m-) analytically orderly point

process. Then it is ordinary and therefore N is simmle.

The proof of the first part follows that of Daley (assertion 2

2
in [7]) since IR2 is locally compact, and the second part is similar

to that cf Leadbetter [16].

Relations with the Khintchin orderly property involves the fol-

lowing possibly infinite valued measure

(B) = suoJYl{N(B i ) > 0, B. B6, B. disjoint, -JB. =B}.
i i

This measure is called the parametric measure of N. It is a-finite

if the point process N is finite (a.s.) on every bounded Borel set.

Theorem 3.3: Let N be a finite and uniformly Khintchin orderly
- '4.

point process. Then it is Khintchin orderly and therefore it is

ordinary.

Here, too, the proof is essentially the same as given by Lead-

better [161.

The following result is a generalization of Korolyuk's theorem

!Oi
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..S ~ and was proved by Belyayev. A simpler proof of the two theorems was

given by Leadbetter in [161, using dissecting systems.

Theorem 3.4: Let N be a point process. Then

'(B) = E[N*(B) =B)

2for every Borel set B in M+ . In particular, if N is simple and if

its filtration satisfies the conditional independence property,

then ' and '- coincide on B
N N

- Another result, which can be viewed as a converse of Theorem

3.2, is the following generalized version of Dobrushin's lemma.

-1 Theorem 3.3: Let N be a simple point process finite on bounded

Borel sets. Suppose that there exists a sequence of nonnegative

real numbers ia } and a function t(t) -0 as t -0 such that for each

n and for every rectangle D with rational endpoints and same measure~n

deoending on n,

a {N (D > >O IP {N(D n ) > 1 (a n ).

Then the point process N is uniformly Khintchin orderly and uniform-

\pS. ly analytically orderly.

Definition: A point process N is called stationary in law if

2for every bounded Borel set BI, ... , Bn in IR.+, the probability law of sets

(N(B +Z),..., N(B +z)) does not deoend on z(z - IR2

1 n +

Note that if N is stationary in law, then the condition of

Theorem 3.4 clearly holds. Note also that under stationarity, the

measure intensity A,(2,') and the parametric measure u(') are regular

2invariant Borel measures in IR2 . Thus they are constant multiples
-S +

2r % 4
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of the Lebesgue measure m(.) on the plane. That is \,,(Q,B) ='m(B),

and (B)='_m(B) for every Borel set B where and 1 are called the

intensity and the parameter of the stationary point process, re-

spectivelv. It is clear that 1<_" and Korolyuk's theorem states

that in general they are equal. More generally, if the measures

(,') and _(') are absolutely continuous with respect to the

Lebesue measure, then their Radon-Nikodym derivatives are called

respectively the intensity and the parameter of the point process.

We obtain the following Khintchin's existence theorem.

Theorem 3.6: Suppose N is a simple point orocess which is station-

ary in law. Then N is both uniformly Khintchin orderly and uniform-

lv analytically orderly, and

lima m(D -P N (Dn ) O} = =
n n

where iD - are rectangles such that {m(D n is a strictly decreas-S--n n n n

ing sequence to zero. Moreover if N is also almost surely an m-

orderly process, then it is m-analytically orderly.

°. . . . . .. . . . . . . . . . . . . . . . . ..-....
. . . . . .. . . . . . . . . . . . . . . . . . . .*j
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4. The (doubly stochastic) Poisson process

The two-parameter doubly stochastic Poisson process was defined

and studied by several authors, see for example J. Grandell [9].

4 , In the deterministic c-se, the Poisson process was defined and con-

structed by Kingman [15] and by Neveu [311 and studied by Yor [361

and Mazziotto-Szpirglas [21]. A simple construction of the Poisson

orocess by nonstandard analysis methods was given in Manevitz-

Merzbach [17]. In fact, this process has already been used many

years ago in several problems in spatial statistics.

2Definition: Let M = {M ,z E IR + be a simple point process, andz I+.,

-et .= ,z E IR+}be a nonnegative, F * -measurable and integrable+ (0,0)

process. If for all z <z' and u EIR,

SuM(zz' ] IF iuE"e F-*] = exp{ (e - 1) f \ d }.
z (z,z']

Then M is called a F*-doubly stochastic Poisson process. If is

deterministic then M is called a F*-Poisson process, and if moreover

N is constant (in z) then M is called F*-standard Poisson.

If the filtration is omitted, we take the filtration generated

by the process. In fact the Poisson process can always be chosen

right-continuous with left-limits and the filtration generated by it

is right-continuous and satisfies the conditional independence

property. Therefore, the Poisson Process (as the classical defini-

tion) is a F*-Poisson process with respect to its filtration. The

Poisson process has many characterizations. Before we mention them,

notice that the compensator of the doubly stochastic Poisson process

M is M =fXd; and therefore has a density X which is called the in-

. tensity of the process M.
.p.

i4%."
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If M is a Poisson process, then it is quasi-continuous to the

left in the following sense: For every predictable stopping line L,

! rIL-dM = 0, which is equivalent to saying that the dual predictable

projection M' =M is a continuous process. This means also that for

all n, the predictable projection of the process I_ vanishes.
n

The stopping lines L } are inaccessible (where IL } are the jump
n n

lines associated with M). Moreover, the jump points of M are not

stopping points. (The proof of these facts can be found in Merzbach-

Nualart [271).

Theorem 4.1: Let M be a strictly simple point process. M is a

F* doubly stochastic Poisson process if and only if its compensator

M is F* -measurable and M -M is a strong martingale.
(0,0)

This theorem was proved in [261, without using the conditional

independence property.

In the deterministic case we have other characterizations.

Theorem 4.2: Let M be a point process. The following assertions

are equivalent.

* (1) 4 is a Poisson process.

(2) M has independent increments, and there exists a nonnegative

deterministic function such that for every rectangle D,

M(D) -P(fXzdz) .
"2 D

(3) M is strictly simple, its compensator M is deterministic and

"* M-M is a strong martingale.

* (4) M is strictly simple, its compensator M is deterministic, M -M

is a martingale and the filtration satisfies the conditional independ-

ence property.

'.5P
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This theorem was essentially proved by J. Mecke and by F.

Papangelou [331, but a simpler proof using martingale theory can be

found in [26].

Theorem 4.3: Let M be a point process. The following assertions

are equivalent.

(1) M is standard Poisson.

(2) M has independent increments and there exists a positive con-

stant \ such that for each rectangle D, M(D) -P(Xm(D)).

(3) M is strictly simple, M -Xst is a strong martingale for some

constant , and every z =(s,t).

(4) M is strictly simple, M - Xst is a martingale for some constant
*] z

\ and every z =(s,t) and the filtration satisfies the conditional

independence property.

(5) There exists a positive constant X such that for every rectangle

-.." D with first point d, we have

IP {M(D) =iF F } =Xm(D) +o(m(D)), IPtM(D) >11 F*} =o(m(D)).
d d

(6) The jump points Z n I of M have polar coordinates (n ,r n) where

are i.i.d. with e -U[0,2r], ro, r independent such that there
n n 0 nX satifying 2 2
exists a constant r satisfying 7n -rn I) 2 Exp(X).

(7) M is strictly simple, has independent increments, and for

-) m(B)
every B finite union of rectangles, IP{M(B) =0} = e where X is

a positive constant.

(8) M is strictly simple, has independent increments, M is a.s.

2
finite on every bounded Borel set and for each z + ip{M({z}) =01 =1

%,%*

a4;
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(9) M has independent increments and for any Borel set B, there

exists Borel sets {B 1n= covering B such that for any z cB, we

have M( B n ) 1 and M((z B n ) =0 IP a.s.SzB n z B Bn
n n

"e 2
(10) For everv z IR + , the distribution of the point process

M + I is the Palm measure IP at the point z.

This is a very heterogeneous theorem, but shows several different

approaches to the Poisson process. The four first assertions are

proved as in Theorem 4.2 . (5) is a classical result (see for exam-

ple the book of Cox-Isham). (6) is also a simple property which

intervene in some geometric problems. (7) is a particular case of

(8) which was proved by Prekopa. (9) is a generalization proved by

* Brown-Kupka [6]. (10) is an interesting application of Palm measures.

It was proved by Jagers [12].

Let us now study the problem of transforming a two-parameter point

" process into a Poisson process by means of a t ,-dimnsional tine change.

In the one-parameter case, it was done by P.A. Meyer [29] and ex-

tensively studied by F. Papangelou [32], by a family of stopping

* times. As it was shown in [26], a point process cannot be time

changed in a Poisson process by a family of stopping points. Never-

theless, it was proved in [26] that it is possible to do it by a
N

family of stopping lines.

Theorem 4.4: Let M be a strictly simple point process such that

M -M is a martingale and M have a density X . Suppose that the con-

ditional independence property is satisfied. Suppose also that the

function s -ftX du is non-decreasing for all t >0 and tends to in-
0 S'u

finity with t (or the same after exchanging s and t). Then there

,C e
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,z 2 R uhthtM )i

exists a family of stopping lines {Lz + such that ML z) is

a standard Poisson process.

The next result related to Poisson processes is the representa-

tion theorem for Poisson processes, proved by Yor [36]. Although

it is a particular case of our general representation theorem

(Theorem 2.9), it is interesting for itself.

Theorem 4.5: Let X be a square integrable martingale with respect

to a filtration generated by a standard Poisson process M. Then

there exists a constant X 0, a square integrable process

= {z IR + I and a square integrable P-predictable process

Zl ,Z2 E2 } such that for every z

X =X 0 + f (dM, - Nd ) + f f (dM - dZl)(dM - dz2Z (0,0) (0,0) (0,0)

and this decomposition is unique.

Let us also mention in this section results in convergence of

point processes to Poisson processes, which were proved by Ivanoff

[10].

Theorem 4.6: Let {M(n)} be a sequence of simple point processes,

n

such that the sequence of compensators M(n) are continuous and

(n)P 2
satisfy Mfor each z EIR where M is a continuous determin-
atsf z z I+

M(n) -(n)
istic function. if (M z and {M } are both uniformly integrable

2

for each z EIR+, or if there exists a bounded sequence of stopping

lines {L } such that (M(n) (L n) z } is uniformly bounded, thenn n

M - M in distribution, where M is a Poisson process with compensat-

or M.

..
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We conclude this section by computing the laws of the stopping

lines L n associated with a Poisson process. Let f be a stepped

line of separation with n exoosed points: z,..., z . In S, the

Hausdorff metric is well defined; it is the same that the metric

defined between the compact subsets of IR+. In other words, if e'

is another line of separation, we have

d(Z,V) =sup 2 ld(z,t) -d(z,Z')I =maxi sup d(z,(O,']), sup d(z, [0 ])},

where d(z,A) inf zAd(z,z') and this last term is the "sup" dis-

tance in IR+. Denote V(C,h) ={':e' line of senaration: &<t' and d(1,1')< h}.

* It is an interval in S of length h.

'-/ Proposition 4.7: Let (LnIn be the jump stopping lines of a Poisson

2
process in IR+ with intensity N. Then

n 2
*-\ ([0,Z]) n _h2

(i) IP{L I EV(e,h)} = e ( Z (I-e h

n 2

!i.(ii) IP{fLn <V(Z,h)IL n-l V 1} e [V It] H (I -e- h

%i<l

" (iii) IP (a k, Lk  <L {z n EIN}
n

1n -1Z I n Rz. z. R

" l~-lim ( e - e "3+.+(_l)n e klZ
()n- kh l i<ij

, Moreover, these probabilities characterize the laws of {L }wherenn n

. and ' are stepped lines of separation with a finite number of

" - exposed points. The proof of this proposition was given by Mazziotto

and Merzbach in [19].

MCC.
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5. Palm measures

Intuitively, the Palm measure of a process is the conditional

* distribution of the process given that the process has a jump at the

origin or more generally at a fixed point z. If N has an atom at z,

the elementary definition works:

P N(B) I/N( z}) >0} = I {N(B) I,N({z}) > O}/IP{N(z) 01

2
where B is a Borel subset of 1R and I a set of integer numbers.

More generally, write ;*(B) = *(2,B) =E[N*(B)] and assume that it is

a Radon measure. Using the Radon-Nikodym theorem, for every fixed

point z (even if z is not an atom of N), the above expression makes

sense; and this measure is called the Palm measure of N at point

z: IP
z

0 The following two results which were proved by P. Jagers [121

show the importance of the notion of Palm measure.

Theorem 5.1: The distribution of a point process N is uniquely

determined by its Palm measures {( , z a nd 2"and

Theorem 5.2: Assume that \* is a Radon measure. Then N is a

A: Poisson process if and only if for every z +, the distribution
of the point process N +I1z,-) is the Palm measure IP . (It is

property 10 of Theorem 4.3).

In fact, three different definitions can be used in order to

define in a precise manner the concept of Palm measure in I. The

first two were already generalized to a more general space, see for

example Neveu's lectures [311 which give a good account of the dif-

ferent definitions and their relationships. The more natural defini-

tion, very important in several applications, defines the Palm

,04
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measure by the translation of the probability of the greatest jump

point which is smaller than the origin. It is the reason for which

this approach was studied only in the classical case IR in which a

natural complete order is given.

Nevertheless, if we look at the jump lines, instead of at the

jump points, associated with a point process defined in the whole

plane, we obtain a linear order which permits the study of this

* natural approach.

Let (G,+) be a topological group, and G the a-field of its

Borel sets.

Definition. A (measurable) flow indexed by G on a probability

space (1,F ,IP) is a family {% ,t ,: G} of functions e .q -' such that

W(i) o =3 S+ and 9 =identity,5., t s t0

(ii) The function (t,w) gt (w) is a measurable function from

(G eC F) into ([,F).

(iii) AtoIP = IP for every t - G.

The simplest example of flow is the translation group T,t G}

defined in G by T t(s) =s -t.

-, Definition: Let N = {Nt ,t -G be a point process parameterized

by G. N is called stationary if there exists a flow V' ,t G}t

such that N(-t,-) = t[NC ,.)].

Clearly a stationary point process is stationary in law.

The following theorem, proved already by Neveu [311 and others

in a general framework, gives a general definition of the Palm

measure.

--- Z,-
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Theorem 5.3: To any point process N = Nt ,t G} which is stationary

for a flow 9t,t c G}, we can associate a unique J-finite measure

IP0 on (',F ) such that

E[ff( t (),t)dNt] = fff(u,t)dm dip 0SG 2 G

for every measurable function f:2xG -IR+, m being here the Haar

measure on the group G.

This formula is sometimes called Campbell's formula. For ex-

ample, we obtain that

*.' IP0  (3) = E[N(F)]'/ (F)

for any --non-null Borel set F in G. More particularly if G is a

n
discrete subset of IR and N is simple, we obtain the intuitive re-

lation:

IP0 (1) = E[N({0}) ] = IP {N({O}) 30}.

Other characterizations of Palm measure and supplementary properties

can be found for example in Neveu [31].

Now, coming back to the two-parameter case, we suppose from now

pon that all the processes are "infinite in each quadrant", i.e.
*. 2 2 R2 I2) 2

N (IR N(IR+_) = N(IR) = N(_= +2 , where IR+ { (s, t):s -0,t >0,

2 2
IR2  = { (s,t) :s < 0,t > 0} and IR2  { (s,t) : (s,t) - (0,0) }

-

Proposition 5.4: If N is a simple jump process, then it can be

written uniquely by

"" Nn,)= W SL n. n=- n

where {L - are step stopping lines satisfying

-..O n

" %



32

< L 1 
< L0 

-< (0, 0) < L1 < L2 < ... and lim L =± .

Proof: If the process was defined only in the positive quadrant of

*' the plane, then a unique representation was constructed in [271 and

also in [191 in a very general setting. Here, consider first the

square [-(n,n),(n,n)] and by the same method we obtain a finite

strictly increasing sequence {L.(n) I m(n) of stopping lines which
i i=m(n)

charges all the jump points of the process in the square:

m' (n)
N = E- (n)'

i=m(n) L.

where m(n) -< 0 -m' (n). Since N is infinite in each quadrant, for n

sufficiently large, some of these stopping lines are passing through

the negative quadrant 2 Therefore, we can suppose (up to a new

indexation) that L ( (,0) and L(n) is the greatest stopping line0 - 0

of the sequence with this property. Tending n to infinity, we ob-

tain the required properties of the proposition.

2
Let Sf be the set of the sets of separation in IR2 constituted

by a finite number of intervals parallel to the axes. Each element

n -
of Sf is of the form v.=z., and therefore can be written uniquely

as a finite sequence {z In= of 2. Now, we can consider the group
i i 1

of translations on Sf. This operation is uniquely extenced to the set S The

sets of separation in IR2 constituted by a denumerable number of

d intervals parallel to the axes. Indeed since mIR 2 is a locally

compact Hausdorff space with a countable basis, a topological group

and a topological lattice, then the set C(IR2 ) of all the closed

subsets of I2can be provided by a topology such that C(m 2  is a

". %-
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compact Hausdorff and separable space. Moreover, it was proved in

[191 that the set S of all the sets of separation is closed in C(IR2

and the natural order in S implies that S is in fact a topological

lattice.

Using a convergence theorem of Matheron [181 we verify that the

addition operation is continuous in C(IR2 ) and therefore can be

uniquely extended to S. In fact, the definition of the addition

between elements of Sd and ER- will be enough for our purpose and can

--be defined directly.

Since IR is a topological group we can consider flows ,z IR
2Z

indexed by R2  Furthermore, if z is a mneasurable random point, then

the function 8 :C/ -2. defined by e (w) is measurable.z Z Z (,u) i esrbe

The main result is the following theorem which characterizes the Palm

measure by the stopping lines associated with the process. It was

proved in [24].

Theorem 5.5: Let N = E+ L  be a stationary strictly simple point
n

2
process on IR which is infinite in each quadrant, and denote by

the measurable subset of Q defined by = {w:N(w,{ (0,0)) } 0

=j:L0 () ((0,0)\{(O,) }) $, (0,0) L0 ( ) Let Z 0 L 0 IR

be a random jump point of N. Then the measurable function ', from

I is onto 7 and the Palm measure IP of the process N can be obtained
0

by the relation

9 Z IP = m(L 0 ,L)1IP0
zo

which implies that 7 is the support of IP0*

hw
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lid % %4 .* *



N.

34

[1] Al-Hussaini, A. and Elliott, R.J. (1981). Martingales, po-
tentials and exponentials associated with a two-parameter jump
process, Stochastics 6, 23-42.

(2] Al-Hussaini, A. and Elliott, R.J. (1981). Stochastic calculus
for a two-parameter jump process, Lecture Notes in Math. 86j,
233-244.

[3] Al-Hussaini, A. and Elliott, R.J. (1985). Filtrations for the

two-parameter jump process, J. Multiv. Anal. 16, 118-139.

[4] Bartlett, M.S. (1974). The statistical analysis of spatial
pattern, Adv. Appl. Prob. 6, 36-358.

[5] Bremaud, P. and Jacod, J. (1977). Processus ponctuels et
martingales: Resultats recents sur la modelisation et le
filtrage. Adv. Appl. Prob., 9, 362-416.

[6] Brown, T. and Kupka, J. (1983). Ramsey's theorem and Poisson
random measures, Ann. Prob. 11, 904-908.

[7] Daley, D.J. (1974). Various concepts of orderliness for point
processes. In Stochastic Geometry, ed. by Harding, E.F. and
Kendall, D.E., J. Wiley & Sons, 148-161.

[9] Fisher, L. (1972). A survey of the mathematical theory of
multidimensional point process. In Stochastic Point Process,
Statistical Analysis, Theory and Applications, ed. Lewis, P.A.,
Wiley, New York, 468-513.

[9] Grandell, J. (1976). Doubly stochastic Poisson processes,
Lecture Notes in Math. 529, Springer, Berlin.

- [10] Ivanoff, B.G. (1985). Poisson convergence for point processes
in the plane, J. Austral. Math. Soc. (Series A) 39, 253-269.

[11] Jacod, J. (1975). Multivariate point processes: predictable
projection, Radon-Nikodym derivatives, Representation of Martin-
gales, Z. Wahrsch. verw. Geb. 31, 235-253.

[12] Jagers, P. (1974). Aspects of random measures and point pro-
cesses, Adv. Probab. 3, ed. Ney, M. Dekker, 179-239.

[13] Kallenberg, 0. (1973). Characterization and convergence of
random measures and point processes, Z. Wahrsch. verw. Geb. 27,
9-21.

[141 Kallenberg, 0. (1983). Random Measures, 3rd ed., Academic Press.

[15] Kingman, J.F.C. (1967). Completely random measures, Pac. J.
Math. 21, 59-78.

[161 Leadbetter, M.R. (1972). On basic results of point process
N theory, Proc. Sixth Berkeley Symp., 449-462.

-5.%.



35
9

[17] Manevitz, L. and Merzbach, E. (1986). Multi-parameter stochast-
ic processes via non-standard analysis, submitted.

[18] Matheron, G. (1975). Random Sets and Integral Geometry, J.
Wiley & Sons.

[19] Mazziotto, G. and Merzbach, E. (1986). Point processes indexed
by directed sets, submitted.

[20] Mazziotto, G., Merzbach, E. and Szpriglas, J. (1981). Discon-
tinuit6s des processus croissants et martingales a variation
integrable, Lecture Notes in Math. 863, 59-83.

[21] Mazziotto, G. and Szpirglas, J. (1980). Equations du filtrage
pour un processus de Poisson m6l1nge a deux indices, Stochastics
4, 89-119.

V [22] Mazziotto, G. and Szpirglas, J. (1981). Un exemple de processus
a deux indices sans l'hypoth~se F4. Sem. Probab. XV, Lect.
Notes in Math. 850, Springer-Verlag, Berlin-Heidelberg-New York,

"4 673-688.0
[23] Mecke, J. (1967). Stationare zufallige Masse auf lokalkompakten

Abelschen Gruppen. Z.F.W. 9, 36-58.

[24] Merzbach, E. (1987). Measures associated with point processes
in the plane, submitted.

[25] Merzbach, E. and Nualart, D. (1985). Different kinds of two-
parameter martingales, Israel J. Math. 52, 193-203.

[26] Merzbach, E. and Nualart, D. (1986). A characterization of the
spatial Poisson process and changing time, Ann. Probab. 14,
1380-1390.

[27] Merzbach, E. and Nualart, D. (1987). A martingale aproach to
- point processes in the plane, Ann. Probab., to appear.

[28] Merzbach, E. and Zakai, M. (1980). Predictable and dual pre-
dictable projections of two-parameter stochastic processes.
Z. Wahrsch. verw. Geb. 53, 263-269.

[29] Meyer, P.A. (1969). Demonstration simplifee d'un theoreme de
Knight, Lecture Notes in Math. 191, 191-195, Springer, Berlin.

[301 Milne, R.K. (1971). Simple proofs of some theorems on point
p processes, Ann. Math. Statist. 42, 368-372.

[31] Neveu, J. (1977). Processus ponctuels. Lecture Notes in Math.
598, 250-447, Springer-Verlag, Berlin-Heidelberg-New York.

[321 Papangelou, F. (1972). Integrability of expected increments of
point processes and a related random change of scale, Trans.
Amer. Math. Soc. 165, 483-506.

. . ,•
. . . . . . . . . . . . . . . . . . . . . ..i ... . .-. .



36

[331 Papangelou, F. (1974). The conditional intensity of general
point processes and an application to line Processes, Z. Wahrsch.
verw. Geb. 28, 207-226.

[34] Riplev, B.D. (1976). Locally finite random sets: foundations
of point process theory, Ann. Probab. 4, 983-1005.

[35] Watanabe, S. (1964). On discontinuous additive functionals and
Levy measures of a Markov process, Japanese J. Math. 34, 53-70.

4

[361 Yor, M. (1976). Representation de martingales de carre integra-
ble relatives aux processus de Wiener et de Poisson a n para-
metres, Z. Wahrsch. verw. Geb. 35, 121-129.

5%.

..

'. •

- a



.)-0

-.'.".

g.5C

/7?
o.. .i.

04, 0- .O*•• • • • • ., O . .!O. .


